题目内容

【题目】如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为( ,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为

【答案】
【解析】解:如图,作O′C⊥y轴于点C,

∵点A,B的坐标分别为( ,0),(0,1),∴OB=1,OA= ,∴tan∠BAO= =
∴∠BAO=30°,
∴∠OBA=60°,
∵Rt△AOB沿着AB对折得到Rt△AO′B,
∴∠CBO′=60°,
∴设BC=x,则OC′= x,∴x2+( x)2=1,解得:x= (负值舍去),∴OC=OB+BC=1+ = ,∴点O′的坐标为( ).
故答案为:( ).
作O′C⊥y轴于点C,首先根据点A,B的坐标分别为( ,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′= x,利用勾股定理求得x的值即可求解. 本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B的坐标确定三角形为特殊三角形,难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网