题目内容

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.

(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.

【答案】
(1)

证明:∵ED=EC,

∴∠EDC=∠C,

∵∠EDC=∠B,

∴∠B=∠C,

∴AB=AC


(2)

解:连接AE,

∵AB为直径,

∴AE⊥BC,

由(1)知AB=AC,

∴BE=CE= BC=

∵CECB=CDCA,AC=AB=4,

2 =4CD,

∴CD=


【解析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE= BC= ,由割线定理可证得结论.本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网