题目内容
【题目】如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.
(1)将下面的表格补充完整:
正多边形的边数 | 3 | 4 | 5 | 6 | …… | 18 |
∠α的度数 |
|
|
|
| …… |
|
(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.
(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.
【答案】(1)60°,45°,36°,30°,10°;(2)当多边形是正九边形,能使其中的∠α=20°;(3)不存在,理由见解析
【解析】
(1)根据多边形内角和公式求出多边形的内角和,再根据三角形内角和定理求出即可;
(2)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可;
(3)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可.
(1)填表如下:
正多边形的边数 | 3 | 4 | 5 | 6 | …… | 18 |
∠α的度数 | 60° | 45° | 36° | 30° | …… | 10° |
故答案为:60°,45°,36°,30°,10°;
(2)存在一个正n边形,使其中的∠α=20°,
理由是:根据题意得:=20°,
解得:n=9,
即当多边形是正九边形,能使其中的∠α=20°;
(3)不存在,理由如下:
假设存在正 n 边形使得∠α=21°,得 ,
解得:,又 n 是正整数,
所以不存在正 n 边形使得∠α=21°.
练习册系列答案
相关题目