题目内容

【题目】计算题。
(1)用适当的方法解下列一元二次方程:x2﹣6x+1=0.
(2)如图,已知E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF,求证:BE=CF.

【答案】
(1)解:x2﹣6x+1=0.

移项得,x2﹣6x=﹣1,

配方得,x2﹣6x+9=﹣1+9,

∴(x﹣3)2=8,

∴x﹣3=±2

∴x1=3+2 ,x2=3﹣2


(2)证明:∵矩形ABCD的对角线为AC和BD,

∴AO=CO=BO=DO,

∵E、F分别是矩形ABCD的对角线AC和BD上的点,AE=DF,

∴EO=FO,

在△BOE和△COF中,

∴△BOE≌△COF(SAS),

∴BE=CF.


【解析】(1)用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)根据矩形对角线的性质,矩形对角线互相平分且相等,可知EO=FO,BO=CO,∠BOE=∠COF,可知△BOE≌△COF,即可得出BE=CF.
【考点精析】利用矩形的性质对题目进行判断即可得到答案,需要熟知矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网