题目内容
【题目】如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出y1>y2时x的取值范围;
(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.
【答案】
(1)
解:把B(3,2)代入 得:k=6
∴反比例函数解析式为:
把C(﹣1,n)代入 ,得:
n=﹣6
∴C(﹣1,﹣6)
把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得: ,解得:
所以一次函数解析式为y1=2x﹣4
(2)
解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.
(3)
解:y轴上存在点P,使△PAB为直角三角形
如图,
过B作BP1⊥y轴于P1,
∠B P1 A=0,△P1AB为直角三角形
此时,P1(0,2)
过B作BP2⊥AB交y轴于P2
∠P2BA=90,△P2AB为直角三角形
在Rt△P1AB中,
在Rt△P1 AB和Rt△P2 AB
∴
∴P2(0, )
综上所述,P1(0,2)、P2(0, ).
【解析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.
【考点精析】解答此题的关键在于理解反比例函数的性质的相关知识,掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.
【题目】如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.
(1)将下面的表格补充完整:
正多边形的边数 | 3 | 4 | 5 | 6 | …… | 18 |
∠α的度数 |
|
|
|
| …… |
|
(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.
(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.