题目内容
【题目】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.
(1)若PE⊥BC,则①PE= cm,CE= (用含t的式子表示);
②求BQ的长;
(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。
【答案】(1)①5,2t -2;②BQ=;(2)存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4或12 s.
【解析】试题分析:(1)①作AM⊥BC于M,由已知条件得出AB=AC,由等腰三角形的性质得出BM=CM,由直角三角形斜边上的中线性质得出AM=BC=5,从而得出PE的长,由CQ=2t,QE=2,得到CE的长;
②证出△APN和△CEN是等腰直角三角形,得出PN=AP=t,CE=NE=5﹣t,由CE=CQ﹣QE=2t﹣2得出方程,解方程即可;
(2)由平行四边形的判定得出AP=BE,得出方程,解方程即可.
试题解析:解:(1)①作AM⊥BC于M.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5.∵PE⊥BC,∴PE=AM=5.∵AP=t,CQ=2t,∴CE=2t-2.
②由①可知:AM=BC=5.∵AD∥BC,∴∠PAN=∠C=45°.∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5﹣t.∵CE=CQ﹣QE=2t﹣2,∴5﹣t=2t﹣2,解得:t=,所以BQ=BC﹣CQ=10﹣2×=;
(2)存在,t=4;理由如下:
若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10﹣2t+2或t=2t﹣2﹣10
解得:t=4或12,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4或12.