题目内容

【题目】如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,求l沿OC所在直线向下平移多少cm时与⊙O相切.

【答案】解:∵直线和圆相切时,OH=5,
又∵在直角三角形OHA中,HA= =4,OA=5,
∴OH=3.
∴需要平移5-3=2cm.故答案为:2.
【解析】根据直线和圆相切,则只需满足OH=5.又由垂径定理构造直角三角形可求出此时OH的长,从而计算出平移的距离.
【考点精析】关于本题考查的垂径定理和直线与圆的三种位置关系,需要了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网