题目内容
【题目】如图17-Z-11,小红同学要测量A,C两地的距离,但A,C之间有一水池,不能直接测量,于是她在A,C同一水平面上选取了一点B,点B可直接到达A,C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A,C两地之间的距离.(结果精确到1米,参考数据: ≈4.6)
图17-Z-11
【答案】92米
【解析】试题分析:过点C作CD⊥AB交AB的延长线于点D,利用特殊构造的Rt△BCD,求出BD,CD,AD,最后利用勾股定理求出AC.
试题解析:
过点C作CD⊥AB交AB的延长线于点D,
∵∠ABC=120°,∴∠CBD=60°,
∴在Rt△BCD中,∠BCD=90°-∠CBD=30°,
∴BD=BC=×20=10(米),
∴CD==10 (米),
AD=AB+BD=80+10=90(米).
在Rt△ACD中,AC==≈92(米).
答:A,C两地之间的距离约为92米
【题目】某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕;
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。
【答案】(1);(2)(千帕);(3)()。
【解析】试题分析:(1)、根据物理公式,温度=气球内气体的气压(P)×气球体积(V),将A(1.5,64)代入求温度,确定反比例函数关系式; (2)、将 v=0.8代入(1)中的函数式求p即可; (3)、将P144代入(1)中的函数式求V,再回答问题.
试题解析:(1)、由题意得,温度=PV=1.5×64=96,
∴P=
(2)当V=0.8时,P=120(千帕)
(3)∵当气球内的气压大于144千帕时,气球将爆炸,
∴P144,
∴144,
解得:
考点:反比例函数的应用
【题型】解答题
【结束】
21
【题目】水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | 第8天 | |
售价x(元 | 400 | 250 | 240 | 200 | 150 | 125 | 120 | |
销售量y(千克) | 30 | 40 | 48 | 60 | 80 | 96 | 100 |
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?