题目内容
【题目】如图,已知Rt△ABC中,∠C = 90°,AD是∠BAC的角平分线.
(1)请尺规作图:作⊙O,使圆心O在AB上,且A点在圆⊙O上.(不写作法,保留作图痕迹);
(2)判断直线BC与所作⊙O的位置关系,并说明理由.
【答案】(1)答案见解析;(2)答案见解析.
【解析】
(1)作图思路:可做AD的垂直平分线,这条垂直平分线与AB的交点就是所求圆的圆心,这个圆心和A点或D点的距离就是圆的半径;(2)要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.本题中可先连接OD再证明OD⊥BC即可.
解:(1)如图;
⊙O即为所求.
(2)连接OD;
∵AD平分∠BAC,
∴∠BAD=∠DAC;
又∵OD=OA,
∴∠ODA=∠OAD,
∴∠ODA=∠DAC,
∴OD∥AC,
∴∠ODC=∠C=90°,
∴BC为⊙O的切线.
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=25°,O为AB的中点. 将OA绕点O逆时针旋转θ °至OP(0<θ<180),当△BCP恰为轴对称图形时,θ的值为_____________.
【题目】某服装公司的某种运动服每月的销量与售价的关系信息如表:
售价x(元/件) | 100 | 110 | 120 | 130 | … |
月销量y(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销量该运动服每件的利润是 元;
②月销量是y= ;(直接写出结果)
(2)设销售该运动服的月利润为w元,那么售价为多少时,当月的利润最大,最大利润时多少?
(3)该公司决定每销售一件运动服,就捐赠a(a>0)元利润给希望工程,物价部门规定该运动服售价不得超过120元,设销售该运动服的月利润为w元,若月销售最大利润是8800元,求a的值.