题目内容
【题目】如图,已知是的直径,弦于点,点在上,.
(1)判断、的位置关系,并说明理由;
(2)若,,求线段的长;
(3)若恰好经过圆心,求的度数.
【答案】(1);(2)16;(3)30°
【解析】
(1)根据圆周角定理可得出∠M=∠D=∠C,由此即可得出结论;
(2)先根据AE=16,BE=4得出OB的长,进而得出OE的长,连接OC,根据勾股定理得出CE的长,进而得出结论;
(3)根据题意画出图形,根据圆周角定理可知,∠M=∠BOD,由∠M=∠D可知∠D=∠BOD,故可得出∠D的度数.
(1)BC∥MD.理由如下:
∵∠M=∠D,∠M=∠C,∴∠D=∠C,∴BC∥MD;
(2)连接OC.
∵AE=16,BE=4,∴OB==10,∴OE=10﹣4=6.
∵CD⊥AB,∴CE=CD.在Rt△OCE中,∵OE2+CE2=OC2,即62+CE2=102,解得:CE=8,∴CD=2CE=16;
(3)如图2.
∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,即∠BOD=2∠D.
∵AB⊥CD,∴∠BOD+∠D=90°,即3∠D=90°,解得:∠D=30°.
练习册系列答案
相关题目