题目内容
【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若AB=4+ ,BC=2 ,求⊙O的半径.
【答案】
(1)证明:连接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切线
(2)解:过点C作CE⊥AB于点E.
在Rt△BCE中,∠B=60°,BC=2 ,
∴BE= BC= ,CE=3,
∵AB=4+ ,
∴AE=AB﹣BE=4,
∴在Rt△ACE中,AC= =5,
∴AP=AC=5.
∴在Rt△PAO中,OA= ,
∴⊙O的半径为 .
【解析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2 ,于是得到BE= BC= ,CE=3,根据勾股定理得到AC= =5,于是得到AP=AC=5.解直角三角形即可得到结论.
练习册系列答案
相关题目