题目内容

【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;
(2)若AB=4+ ,BC=2 ,求⊙O的半径.

【答案】
(1)证明:连接OA,

∵∠B=60°,

∴∠AOC=2∠B=120°,

又∵OA=OC,

∴∠OAC=∠OCA=30°,

又∵AP=AC,

∴∠P=∠ACP=30°,

∴∠OAP=∠AOC﹣∠P=90°,

∴OA⊥PA,

∴PA是⊙O的切线


(2)解:过点C作CE⊥AB于点E.

在Rt△BCE中,∠B=60°,BC=2

∴BE= BC= ,CE=3,

∵AB=4+

∴AE=AB﹣BE=4,

∴在Rt△ACE中,AC= =5,

∴AP=AC=5.

∴在Rt△PAO中,OA=

∴⊙O的半径为


【解析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2 ,于是得到BE= BC= ,CE=3,根据勾股定理得到AC= =5,于是得到AP=AC=5.解直角三角形即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网