题目内容
【题目】如图,是的直径,点是上一点,与过点的切线垂直,垂足为点,直线与的延长线相交于点,平分,交于点.
求证:平分;
求证:是等腰三角形.
【答案】见解析
【解析】
(1)依据切线的性质可知OC⊥DC,然后可证明AD∥OC,依据平行线的性质可得到∠DAC=∠ACO,然后依据OA=OC可证明∠OAC=∠ACO,通过等量代换可证明AC平分∠DAB;
(2)依据直径所对的圆周角等于90°可证明∠ACB=90°,然后依据同角的余角相等可证明∠DAC=∠BCP,由(1)可知AC平分∠DAB,从而得到∠CAE=∠BCP,然后结合∠ACE=∠ECB可证明∠PCE=∠PEC.
如图所示:连接.
∵切于点,
∴.
又∵,
∴.
∴.
又∵,
∴,
∴,
即平分.
∵,
∴.
又∵为的直径,
∴.
∴,
∴.
又∵,
∴.
∵平分,
∴,
∴,
∴,
∴,
即是等腰三角形.
练习册系列答案
相关题目