题目内容
【题目】已知:如图,△ABC中,P、Q两点分别是边AB和AC的垂直平分线与BC的交点,连结AP和AQ,且BP=PQ=QC.求∠C的度数.
证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,
∴PA= ,QC=QA.
∵BP=PQ=QC,
∴在△APQ中,PQ= (等量代换)
∴△APQ是 三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠ .
又∵∠AQP是△AQC的外角,
∴∠AQP=∠ +∠ =60°.(三角形的一个外角等于与它不相邻的两个内角的和)
∴∠C= .
【答案】BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.
【解析】
根据线段垂直平分线的性质可得PA=BP,QC=QA,再根据等量关系可得PQ=PA=QA,可得△APQ是 等边三角形,根据等边三角形的性质可得∠AQP=60°,再根据三角形三角形外角的性质和等腰的性质可求∠C的度数.
解:证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,
∴PA=BP,QC=QA.(垂直平分线上任意一点,到线段两端点的距离相等)
∵BP=PQ=QC,
∴在△APQ中,PQ=PA=QA(等量代换)
∴△APQ是等边三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠QAC.
又∵∠AQP是△AQC的外角,
∴∠AQP=∠C+∠QAC=60°.
(三角形的一个外角等于与它不相邻的两个内角的和)
∴∠C=30°.
故答案为:BP,(垂直平分线上任意一点,到线段两端点的距离相等),PA=QA,等边,QAC,C,QAC,30°.
练习册系列答案
相关题目