题目内容
【题目】如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…An,…,将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:
①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;
②抛物线依次经过点A1,A2,A3…An,….
则M2016顶点的坐标为________.
【答案】(4031,4031)
【解析】
根据抛物线的解析式,结合整数点的定义,找出点的坐标为,设点的坐标为(a,a),则以点为顶点的抛物线的解析式为,由点的坐标可求出a值,可发现规律,根据规律可求出答案.
解:M1(a1,a1)是抛物线y1=(x﹣a1)2+a1的顶点,
抛物线y=x2与抛物线y1=(x﹣a1)2+a1相交于A1,
得x2=(x﹣a1)2+a1,
即2a1x=a12+a1,
x=(a1+1).
∵x为整数点,
∴a1=1,
M1(1,1);
M2(a2,a2)是抛物线y2=(x﹣a2)2+a2=x2﹣2a2x+a22+a2顶点,
抛物线y=x2与y2相交于A2,
x2=x2﹣2a2x+a22+a2,
∴2a2x=a22+a2,
x=(a2+1).
∵x为整数点,
∴a2=3,
M2(3,3),
M3(a3,a3)是抛物线y2=(x﹣a3)2+a3=x2﹣2a3x+a32+a3顶点,
抛物线y=x2与y3相交于A3,
x2=x2﹣2a3x+a32+a3,
∴2a3x=a32+a3,
x=(a3+1).
∵x为整数点,
∴a3=5,M3(5,5),
∴点M2016的坐标为:2016×2﹣1=4031,
∴M2016(4031,4031),
故答案是:(4031,4031).
练习册系列答案
相关题目