题目内容
【题目】在矩形中,为边上一点,.将沿翻折得到,的延长线交边于点,过点作交于点.连接,分别交,于点,.现有以下结论:①连接,则垂直平分;②四边形是菱形;③;④若,则.其中正确的结论是________(填写所有正确结论的序号).
【答案】①②③
【解析】
①连接,根据翻折的性质,结合等腰三角形三线合一的性质即可得出结论;
②DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;
③过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AGGB,即AD2=DPPC;
④由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF-AE=AC-AC=AC,从而可得.
①根据翻折的性质可得,AD=A,∠DAP=∠AP,
连接,根据等腰三角形“三线合一”的性质得,垂直平分.
②∵DP∥AB,
∴∠DPA=∠PAM,
由题意可知:∠DPA=∠APM,
∴∠PAM=∠APM,
∵∠APB-∠PAM=∠APB-∠APM,
即∠ABP=∠MPB
∴AM=PM,PM=MB,
∴PM=MB,
又易证四边形PMBN是平行四边形,
∴四边形PMBN是菱形;
③过点P作PG⊥AB于点G,
∴易知四边形DPGA,四边形PCBG是矩形,
∴AD=PG,DP=AG,GB=PC
∵∠APB=90°,
∴∠APG+∠GPB=∠GPB+∠PBG=90°,
∴∠APG=∠PBG,
∴△APG∽△PBG,
∴,
∴PG2=AGGB,
即AD2=DPPC;
④由于,
可设DP=1,AD=2,
由(1)可知:AG=DP=1,PG=AD=2,
∵PG2=AGGB,
∴4=1GB,
∴GB=PC=4,
AB=AG+GB=5,
∵CP∥AB,
∴△PCF∽△BAF,
∴,
∴,
又易证:△PCE∽△MAE,AM=AB=,
∴
∴,
∴EF=AF-AE=AC-AC=AC,
∴.
故答案为:①②③.