题目内容
【题目】如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.
(1)求k2,n的值;
(2)请直接写出不等式k1x+b<的解集;
(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.
【答案】(1)k2=﹣8,n=4;(2)﹣2<x<0或x>4;(3)8
【解析】(1)将A点坐标代入y=求出k2=-8,得到反比例函数的解析式y=-,再把B点坐标代入y=-得n=4;
(2)用函数的观点将不等式问题转化为函数图象问题;
(3)求出对称点坐标,求面积.
(1)将A(4,-2)代入y=,得k2=-8.
∴y=-,
将(-2,n)代入y=-,得n=4.
∴k2=-8,n=4
(2)根据函数图象可知:
-2<x<0或x>4
(3)将A(4,-2),B(-2,4)代入y=k1x+b,得k1=-1,b=2
∴一次函数的关系式为y=-x+2
与x轴交于点C(2,0)
∴图象沿x轴翻折后,得A′(4,2),
S△A'BC=(4+2)×(4+2)×-×4×4-×2×2=8
∴△A'BC的面积为8.
【题目】为了增强环境保护意识, 月 日“世界环境日”当天,若干名“环境小卫士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市 个噪声测量点在某时刻的噪声声级(单位:),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如表:
组 别 | 噪声声级分组 | 频 数 | 频 率 |
1 | 44.5--59.5 | 4 | 0.1 |
2 | 59.5--74.5 | a | 0.2 |
3 | 74.5--89.5 | 10 | 0.25 |
4 | 89.5--104.5 | b | c |
5 | 104.5--119.5 | 6 | 0.15 |
合 计 | 40 | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的 , , ;
(2)补全完整频数分布直方图(如图);
(3)从这个统计中,你认为噪声污染的噪音声级分布情况怎样?