题目内容
【题目】如图,将边长为3的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为( )
A. B. C. D.
【答案】A
【解析】
利用翻折变换的性质结合勾股定理表示出CH的长,得出△EDM∽△MCH,进而求出MC的长,依据△GPH≌△BCM,可得GH=BM,再利用勾股定理得出BM,即可得到GH的长.
设CM=x,设HC=y,则BH=HM=3﹣y,
故y2+x2=(3﹣y)2,
整理得:y=,
即CH=,
∵四边形ABCD为正方形,
∴∠B=∠C=∠D=90°,
由题意可得:ED=1.5,DM=3﹣x,∠EMH=∠B=90°,
故∠HMC+∠EMD=90°,
∵∠HMC+∠MHC=90°,
∴∠EMD=∠MHC,
∴△EDM∽△MCH,
∴ ,
即,
解得:x1=1,x2=3(不合题意),
∴CM=1,
如图,连接BM,过点G作GP⊥BC,垂足为P,则BM⊥GH,
∴∠PGH=∠HBM,
在△GPH和△BCM中
,
∴△GPH≌△BCM(SAS),
∴GH=BM,
∴GH=BM=.
故选:A.
练习册系列答案
相关题目