题目内容
【题目】阅读材料:求1+2+22+23+24+…+22017
首先设S=1+2+22+23+24+…+22017 ① 则2S=2+22+23+24+25+…+22018 ②
②﹣①得S=22018﹣1 即1+2+22+23+24+…+22017=22018﹣1
以上解法,在数列求和中,我们称之为:“错位相减法”
请你根据上面的材料,解决下列问题
(1)求1+3+32+33+34+…+32019的值
(2)若a为正整数且,求
【答案】(1);(2)
【解析】
(1)根据阅读材料可设S=1+3+32+33+34+…+32019 ①,则3S=3+32+33+34+35+…+32020 ②,用②﹣①得2S=32020﹣1,即可求出S;(2)同理先设设,再求出aS,再利用两式相减,即可求出S.
(1)设S=1+3+32+33+34+…+32019 ①
则3S=3+32+33+34+35+…+32020 ②
②﹣①得2S=32020﹣1
即1+3+32+33+34+…+32019=
(2)设①
则a ②
②﹣①得:(a-1)S=a2020﹣1
即:=
【题目】某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
九(1)班 | 100 | m | 93 | 93 | 12 |
九(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)直接写出表中m、n的值;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;
(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.