题目内容
【题目】(1)已知y﹣2与x成正比例,且x=2时,y=﹣6.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.
(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+6相交于点M(1,p)
①关于x,y的二元一次方程组的解为 ;②求直线l1的表达式.
【答案】(1)①y=﹣4x+2;②x>-;(2)①;②y1=2x+2.
【解析】
(1)根据正比例函数的定义即可求解,再列出不等式即可求解;
(2)根据一次函数与二元一次方程组的关系即可求解,把两点代入即可求解.
解:(1)①∵y﹣2与x成正比例,设y﹣2=kx,把x=2,y=﹣6代入可得;
﹣6﹣2=2k,
解得:k=﹣4,
∴y=﹣4x+2,
②当y<3时,则﹣4x+2<3,
解得:x>-;
(2)①把点M(1,p)代入y2=﹣2x+6=4,
∴关于x、y的二元一次方程组组的解即为直线l1:y1=mx+n与直线l2:y2=﹣2x+6相交的交点M(1,4)的坐标.
故答案为:;
②b把点M(1,4)和点(﹣2,﹣2)代入直线l1:y1=mx+n,可得:,
解得:,
所以直线l1的解析式为:y1=2x+2.
练习册系列答案
相关题目
【题目】某种计时“香篆”在0:00时刻点燃,若“香篆”剩余的长度h(cm)与燃烧的时间x(h)之间是一次函数关系,h与x的一组对应数值如表所示:
燃烧的时间x(h) | … | 3 | 4 | 5 | 6 | … |
剩余的长度h(cm) | … | 210 | 200 | 190 | 180 | … |
(1)写出“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式,并解释函数表达式中x的系数及常数项的实际意义;
(2)通过计算说明当“香篆”剩余的长度为125cm时的时刻.