题目内容

【题目】如图,在ACDBCE中,AC=BC,AD=BE,CD=CE,ACE=55°,BCD=155°,ADBE相交于点P,则∠BPD的度数为(

A. 120° B. 125° C. 130° D. 155°

【答案】C

【解析】

由条件可证明△ACD≌△BCE,可求得∠ACB,再利用三角形内角和可求得∠APB=∠ACB,则可求得∠BPD.

△ACD△BCE

∴△ACD≌△BCE(SSS),

∴∠ACD=∠BCE,∠A=∠B,

∴∠BCA+∠ACE=∠ACE+∠ECD,

∴∠ACB=∠ECD= (∠BCD∠ACE)= ×(155°55°)=50°

∵∠B+∠ACB=∠A+∠APB,

∴∠APB=ACB=50°

∴∠BPD=180°50°=130°

故答案选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网