题目内容
【题目】在Rt△ABC中,斜边AB=5,而直角边BC,AC之长是一元二次方程x2-(2m-1)x+4(m-1)=0的两根,则m的值是( )
A. 4 B. -1 C. 4或-1 D. -4或1
【答案】A
【解析】
利用一元二次方程根与系数的关系,求出a+b和ab,利用勾股定理可得出a2+b2=25,再将方程左边转化为(a+b)2-2ab,然后整体代入建立关于m的方程,解方程求出m的值,再由a+b>0,确定m的值。
如图.设BC=a,AC=b.根据题意得a+b=2m-1,ab=4(m-1).
由勾股定理可知a2+b2=25,
∴a2+b2=(a+b)2-2ab=(2m-1)2-8(m-1)=4m2-12m+9=25,
∴4m2-12m-16=0,
即m2-3m-4=0,
解之得m1=-1,m2=4.
∵a+b=2m-1>0,
即m> ,
∴m=4.
故答案为:A
练习册系列答案
相关题目
【题目】对于抛物线.
(1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为 ;
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是 .