题目内容
【题目】如图△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.
(1)求证:CD=CG;
(2)若AD=CG,求证:AB=AC+BH.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据等腰直角三角形的性质可得∠BAC=∠ABC=45°,然后求出∠DAC=∠GBC,再利用“角边角”证明△ACD和△BCG全等,根据全等三角形对应边相等证明即可;
(2)延长CG交AB于F,求出△CDG是等腰直角三角形,根据等腰直角三角形的性质可得∠CGD=45°,然后求出∠BGH=∠BGF,再求出BG=CG,根据等边对等角可得∠BCG=∠CBG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CBG=22.5°,再求出∠GBF=22.5°,从而得到∠CBG=∠GBF,利用“角边角”证明△BGF和△BGH全等,根据全等三角形对应边相等可得BH=BF,再求出∠ACF=∠AFC=67.5°,根据等角对等边可得AC=AF,然后根据AB=AF+BF等量代换即可得证.
证明:(1)∵CA=CB,∠ACB=90°,
∴∠BAC=∠ABC=45°,
∵AD⊥BD,
∴∠DAC+45°+∠ABD=90°,
∴∠DAC+∠ABD=45°,
∵∠GBC+∠ABD=∠ABC=45°,
∴∠DAC=∠GBC,
在△ACD和△BCG中, ,
∴△ACD≌△BCG(ASA),
∴CD=CG;
(2)如图,延长CG交AB于F,
∵∠BCG=∠DCA,
∴∠DCG=∠DCA+∠ACG=∠BCG+∠ACG=∠ACB=90°,
又∵CD=CG,
∴△CDG是等腰直角三角形,
∴∠CGD=45°,
∵GH⊥CG,∠BGF=∠CGD(对顶角相等),
∴∠BGH=∠BGF,
∵△ACD≌△BCG,
∴AD=BG,
∵AD=CG,
∴BG=CG,
∴∠BCG=∠CBG,
由三角形的外角性质,∠BGF=∠BCG+∠CBG=45°,
∴∠CBG=22.5°,
∴∠GBF=∠ABC﹣∠CBG=45°﹣22.5°=22.5°,
∴∠CBG=∠GBF,
在△BGF和△BGH中, ,
∴△BGF≌△BGH(ASA),
∴BH=BF,
又∵∠AFC=∠ABD+∠BGF=22.5°+45°=67.5°,
∴∠ACF=180°﹣∠BAC﹣∠AFC=180°﹣45°﹣67.5°=67.5°,
∴∠ACF=∠AFC=67.5°,
∴AC=AF,
∵AB=AF+BF,
∴AB=AC+BH.