题目内容
【题目】如图,已知直线l1∥l2 , 线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.
(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当 =2时,求证:AP⊥BD;
②当 =n(n>1)时,设△PAD的面积为S1 , △PCE的面积为S2 , 求 的值.
【答案】
(1)
证明:∵BC⊥直线l1,
∴∠ABP=∠CBE,
在△ABP和△CBE中
∴△ABP≌△CBE(SAS)
(2)
①证明:连结BD,延长AP交CE于点H,
∵△ABP≌△CBE,
∴∠APB=∠CEB,
∵∠PAB+∠APB=90°,
∴∠PAB+∠CEB=90°,
∴AH⊥CE,
∵ =2,即P为BC的中点,直线l1∥直线l2,
∴△CPD∽△BPE,
∴ ,
∴DP=PE,
∴四边形BDCE是平行四边形,
∴CE∥BD,
∵AH⊥CE,
∴AP⊥BD;
②解:∵ =n,
∴BC=nBP,
∴CP=(n﹣1)BP,
∵CD∥BE,
易得△CPD∽△BPE,
∴ =n﹣1,
设△PBE的面积S△PBE=S,则△PCE的面积S△PCE满足 =n﹣1,
即S2=(n﹣1)S,
∵S△PAB=S△BCE=nS,
∴S△PAE=(n+1)S,
∵ = =n﹣1,
∴S1=(n﹣1)S△PAE,即S1=(n+1)(n﹣1)S,
∴ = =n+1.
【解析】(1)求出∠ABP=∠CBE,根据SAS推出即可;(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.
【考点精析】认真审题,首先需要了解相似三角形的性质(对应角相等,对应边成比例的两个三角形叫做相似三角形).