题目内容

【题目】如图,已知直线l1∥l2 , 线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.

(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当 =2时,求证:AP⊥BD;
②当 =n(n>1)时,设△PAD的面积为S1 , △PCE的面积为S2 , 求 的值.

【答案】
(1)

证明:∵BC⊥直线l1

∴∠ABP=∠CBE,

在△ABP和△CBE中

∴△ABP≌△CBE(SAS)


(2)

①证明:连结BD,延长AP交CE于点H,

∵△ABP≌△CBE,

∴∠APB=∠CEB,

∵∠PAB+∠APB=90°,

∴∠PAB+∠CEB=90°,

∴AH⊥CE,

=2,即P为BC的中点,直线l1∥直线l2

∴△CPD∽△BPE,

∴DP=PE,

∴四边形BDCE是平行四边形,

∴CE∥BD,

∵AH⊥CE,

∴AP⊥BD;

②解:∵ =n,

∴BC=nBP,

∴CP=(n﹣1)BP,

∵CD∥BE,

易得△CPD∽△BPE,

=n﹣1,

设△PBE的面积SPBE=S,则△PCE的面积SPCE满足 =n﹣1,

即S2=(n﹣1)S,

∵SPAB=SBCE=nS,

∴SPAE=(n+1)S,

= =n﹣1,

∴S1=(n﹣1)SPAE,即S1=(n+1)(n﹣1)S,

= =n+1.


【解析】(1)求出∠ABP=∠CBE,根据SAS推出即可;(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.
【考点精析】认真审题,首先需要了解相似三角形的性质(对应角相等,对应边成比例的两个三角形叫做相似三角形).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网