题目内容

【题目】如图,一条高速公路在城市A的东偏北30°方向直线延伸,县城M在城市A东偏北60°方向上,测验员从A沿高速公路前行4000米到达C,测得县城M位于C的北偏西60°方向上,现要设计一条从县城M进入高速公路的路线,请在高速公路上寻找连接点N,使修建到县城M的道路最短,试确定N点的位置并求出最短路线长.(结果取整数,≈1.732)

【答案】解:如图,过M作MN⊥AC交于N点,即MN最短,
∵∠EAD=60°,∠CAD=30°,
∴∠CAM=30°,
∴∠AMN=60°,
又∵C处看M点为北偏西60°,
∴∠FCM=60°,
∴∠MCB=30°,
∵∠EAC=60°,
∴∠CAD=30°,
∴∠BCA=30°,
∴∠MCA=∠MCB+∠BCA=60°,
∴在Rt△AMC中,∠AMC=90°,∠MAC=30°,
∴MC=AC=2000,∠CMN=30°,
∴NC=MC=1000,
∵AC=4000米,
∴AN=AC﹣NC=4000﹣1000=3000(米).
答:点N到A市最短路线3000米.

【解析】过M作MN⊥AC交于N点,即MN最短,根据方向角可以证得∠AMC=90°,根据三角函数即可求得MC,进而求得AN的长.
【考点精析】解答此题的关键在于理解解直角三角形的相关知识,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网