搜索
题目内容
定理证明:“等腰梯形的两条对角线相等”.
试题答案
相关练习册答案
证明:在梯形ABCD中,
∵AB=DC,
∴∠ABC=∠DCB.
又∵BC=CB,
∴△ABC≌△DCB.
∴AC=DB.
练习册系列答案
小学期末冲刺100分系列答案
新编单元测试AB卷系列答案
期末夺冠满分测评卷系列答案
创新考王完全试卷系列答案
期末复习检测系列答案
超能学典单元期中期末专题冲刺100分系列答案
期末100分冲刺卷系列答案
黄冈360度定制密卷系列答案
聚能闯关期末复习冲刺卷系列答案
同步测试卷过关冲刺100分系列答案
相关题目
等腰梯形的一个底角是60°,它的两底分别是15cm、49cm,则腰长=______.
如图,梯形ABCD中,AD
∥
BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.
梯形ABCD如图所示,AB、CD分别为梯形上下底,已知阴影部分总面积为5平方厘米,△AOB的面积是0.625平方厘米.则梯形ABCD的面积是______平方厘米.
已知如图,在等腰梯形ABCD中,AD
∥
BC.
(1)若AD=5,BC=11,梯形的高是4,求梯形的周长;
(2)若AD=3,BC=7,BD=
5
2
,证明:AC⊥BD.
等腰梯形两底长分别为5cm和11cm,一个底角为60°,则腰长为______.
如图,等腰梯形ABCD中,AB
∥
DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是( )
A.
16
15
B.
16
5
C.
32
15
D.
16
17
等腰梯形的腰长为2,下底为6,腰与下底的夹角为45°,则梯形的上底长为______.
如图,在直角梯形ABCD中,AD
∥
BC,AB⊥BC,∠DCB=75°,以CD为一边的等边三角形的另一顶点E在腰AB上,点F在线段CD上,∠FBC=30°,连接AF.下列结论:①AE=AD;②AB=BC;③∠DAF=30°;④
S
△AED
:
S
△CED
=1:
3
;⑤点F是线段CD的中点.
其中正确的结论的个数是( )
A.5个
B.4个
C.3个
D.2个
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总