题目内容
已知如图,在等腰梯形ABCD中,AD∥BC.
(1)若AD=5,BC=11,梯形的高是4,求梯形的周长;
(2)若AD=3,BC=7,BD=5
,证明:AC⊥BD.
(1)若AD=5,BC=11,梯形的高是4,求梯形的周长;
(2)若AD=3,BC=7,BD=5
2 |
(1)如图,过点A作AE⊥BC,
∴AE=4,又AD=5,BC=11,∴BE=
(BC-AD)=3,
∴CD=AB=5,
∴梯形的周长为AD+DC+BC+AB=5+5+11+5=26.
(2)证明:如上图,设A,D在BC上的垂线的垂足分别是E,F.AC,BD交于O.
则BE=FC=2.DF=
=
=5.
从而△BFD为等腰直角三角形.∠DBF=45°
同理:∠ACE=45°,得∠BOC=90°.
∴AC⊥BD.
∴AE=4,又AD=5,BC=11,∴BE=
1 |
2 |
∴CD=AB=5,
∴梯形的周长为AD+DC+BC+AB=5+5+11+5=26.
(2)证明:如上图,设A,D在BC上的垂线的垂足分别是E,F.AC,BD交于O.
则BE=FC=2.DF=
(BD2-BF2) |
50-25 |
从而△BFD为等腰直角三角形.∠DBF=45°
同理:∠ACE=45°,得∠BOC=90°.
∴AC⊥BD.
练习册系列答案
相关题目