题目内容

【题目】如图,天星山山脚下西端A处与东端B处相距800(1+ )米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为 米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?

【答案】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,
∵∠A=45°,CD⊥AB,
∴AD=CD=x米,
∴AC= x.
在Rt△BCD中,
∵∠B=30°,
∴BC= = =2x,
∵小军的行走速度为 米/秒.若小明与小军同时到达山顶C处,
= ,解得a=1米/秒.
答:小明的行走速度是1米/秒.

【解析】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,利用锐角三角函数的定义求解是解答此题的关键.
【考点精析】通过灵活运用关于坡度坡角问题,掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网