题目内容
【题目】如图,已知直线经过点,交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.
当时,求证:;
连接CD,若的面积为S,求出S与t的函数关系式;
在运动过程中,直线CF交x轴的负半轴于点G,是否为定值?若是,请求出这个定值;若不是,请说明理由.
【答案】(1)见解析;(2);(3).
【解析】
(1)连接OF,根据“直线经过点”可得k=1,进而求出A(﹣4,0),B(0,4),得出△AOB是等腰直角三角形,得出∠CBF=45°,得出OF= AB=BF,OF⊥AB,得出∠OFD=∠BFC,证得△BCF≌△ODF,即可得出结论
(2)①根据全等三角形的性质可得出0<t<4时,BC=OD=t﹣4,再根据勾股定理得出CD2=2t2-8t+16,证得△FDC是等腰直角三角形,得出,即可得出结果;
②同理当t≥4时,得出BC=OD=t﹣4,由勾股定理得出CD2=OD2+OC2=2t2﹣8t+16,证出△FDC是等腰直角三角形,得出FC2CD2,即可得出结果;
(3)由待定系数法求出直线CF的解析式,当y=0时,可得出G,因此OG,求出即可.
证明:连接OF,如图1所示:
直线经过点,
,解得:,
直线,
当时,;当时,;
,,
,
,
是等腰直角三角形,
,
为线段AB的中点,
,,,
,
,
,
,
在和中,,
≌,
;
解:当时,连接OF,如图2所示:
由题意得:,,
由得:≌,
,
,
,,
是等腰直角三角形,
,
的面积;
当时,连接OF,如图3所示:
由题意得:,,
由得:≌,
,
,
,,
是等腰直角三角形,
,
的面积;
综上所述,S与t的函数关系式为;
解:为定值;理由如下:
当时,如图4所示:
当设直线CF的解析式为,
,,F为线段AB的中点,
,
把点代入得:,
解得:,
直线CF的解析式为,
当时,,
,
,
;
当时,如图5所示:
同得:;
综上所述,为定值.