题目内容
【题目】已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.
(1)如图1,求证:OA是第一象限的角平分线;
(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;
(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.
【答案】(1)证明见解析 (2)答案见解析 (3)8
【解析】
(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,
根据非负数的性质求出a、b的值即可得结论;
(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;
(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.
解:(1)∵|a﹣b|+b2﹣8b+16=0
∴|a﹣b|+(b﹣4)2=0
∵|a﹣b|≥0,(b﹣4)2≥0
∴|a﹣b|=0,(b﹣4)2=0
∴a=b=4
过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM
∴OA平分∠MON
即OA是第一象限的角平分线
(2)过A作AH平分∠OAB,交BM于点H
∴∠OAH=∠HAB=45°
∵BM⊥AE
∴∠ABH=∠OAE
在△AOE与△BAH中
,
∴△AOE≌△BAH(ASA)
∴AH=OE
在△ONE和△AMH中
,
∴△ONE≌△AMH(SAS)
∴∠AMH=∠ONE
设BM与NE交于K
∴∠MKN=180°﹣2∠ONE=90°﹣∠NEA
∴2∠ONE﹣∠NEA=90°
(3)过H作HM⊥OF,HN⊥EF于M、N
可证:△FMH≌△FNH(SAS)
∴FM=FN
同理:NE=EK
∴OE+OF﹣EF=2HK
过A作AP⊥y轴于P,AQ⊥x轴于Q
可证:△APF≌△AQE(SAS)
∴PF=EQ
∴OE+OF=2OP=8
∴2HK+EF=OE+OF=8
【题目】某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:
到超市的路程(千米) | 运费(元/斤·千米) | |
甲养殖场 | 200 | 0.012 |
乙养殖场 | 140 | 0.015 |
设从甲养殖场调运鸡蛋x斤,总运费为W元
(1)试写出W与x的函数关系式.
(2)怎样安排调运方案才能使每天的总运费最省?