题目内容
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是 .
【答案】9
【解析】解:连接EO,延长EO交AB于H.
∵DE∥OC,CE∥OD,
∴四边形ODEC是平行四边形,
∵四边形ABCD是矩形,
∴OD=OC,
∴四边形ODEC是菱形,
∴OE⊥CD,
∵AB∥CD,AD⊥CD,
∴EH⊥AB,AD∥OE,∵OA∥DE,
∴四边形ADEO是平行四边形,
∴AD=OE=6,
∵OH∥AD,OB=OD,
∴BH=AH,
∴OH= AD=3,
∴EH=OH+OE=3+6=9,
所以答案是9.
【考点精析】本题主要考查了三角形中位线定理和平行四边形的判定与性质的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.
练习册系列答案
相关题目