题目内容
【题目】将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是 ,则点C的坐标是( )
A.(4,2)
B.(2,4)
C.( ,3)
D.(3, )
【答案】D
【解析】解:
过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,
过点C作CM⊥x轴于点M,
∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,
∴∠EAO=∠COM,
又∵∠AEO=∠CMO,
∴∠AEO∽△COM,
∴ = ,
∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,
∴∠BAN=∠EAO=∠COM,
在△ABN和△OCM中
∴△ABN≌△OCM(AAS),
∴BN=CM,
∵点A(1,2),点B的纵坐标是 ,
∴BN= ,
∴CM= ,
∴MO==2CM=3,
∴点C的坐标是:(3, ).
故选:D.
【考点精析】本题主要考查了矩形的性质和相似三角形的判定与性质的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.
练习册系列答案
相关题目