题目内容

【题目】如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是( )

A.△BDF∽△BEC
B.△BFA∽△BEC
C.△BAC∽△BDA
D.△BDF∽△BAE

【答案】A
【解析】∵BE平分∠ABC,
∴∠ABE=∠CBE,
又∵∠BAD=∠C,
∴△BFA∽△BEC,
故B正确.
又∵∠BAD=∠C,∠ABC=∠ABD,
△BAC∽△BDA,
故C正确.
∴∠BFA=∠BEC,
又∵∠BFA+∠BFD=180°,∠BEC+∠BEA=180°,
∴∠BFD=∠BEA,
又∵∠DBF=∠ABE,
∴△BDF∽△BAE,
故D正确.
不能证明△BDF∽△BEC,故A错误.
所以答案是:A.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网