题目内容
【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是
【答案】﹣2
【解析】解:
连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,
设A点坐标为(a, ),
∵A点、B点是正比例函数图象与双曲线y= 的交点,
∴点A与点B关于原点对称,
∴OA=OB
∵△ABC为等腰直角三角形,
∴OC=OA,OC⊥OA,
∴∠DOC+∠AOE=90°,
∵∠DOC+∠DCO=90°,
∴∠DCO=∠AOE,
在△COD和△OAE中,
∵ ,
∴△COD≌△OAE(AAS),
∴OD=AE= ,CD=OE=a,
∴C点坐标为( ,﹣a),
∵﹣a =﹣2,
∴点C在反比例函数y=﹣ 图象上.
所以答案是﹣2.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°).
练习册系列答案
相关题目