题目内容
【题目】仔细阅读下面例题,解答问题
例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一个因式为(x﹣7),m的值为﹣21.
问题:
(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;
(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;
(3)仿照以上方法解答下面问题:若二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.
【答案】(1)-3;(2)9;(3)另一个因式为(x+4),k的值为12.
【解析】
试题(1)将(x-2)(x+a)展开,根据所给出的二次三项式即可求出a的值;
(2)(2x-1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;
(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=5,k=3n,继而求出n和k的值及另一个因式.
试题解析:
(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,
∴a﹣2=﹣5,
解得:a=﹣3;
(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,
∴b=9;
(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,
则2n﹣3=5,k=3n,
解得:n=4,k=12,
故另一个因式为(x+4),k的值为12.
练习册系列答案
相关题目