题目内容
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=2,则平行四边形ABCD的周长为______.


∵∠EAF=45°,
∴∠C=360°-∠AEC-∠AFC-∠EAF=135°,
∴∠B=∠D=180°-∠C=45°,
则AE=BE,AF=DF,
设AE=x,则AF=2-x,
在Rt△ABE中,根据勾股定理可得,AB=
x,
同理可得AD=
(2-x).
则平行四边形ABCD的周长是2(AB+AD)=2[
x+
(2-x)]=4
.
故答案为:4
.
∴∠C=360°-∠AEC-∠AFC-∠EAF=135°,
∴∠B=∠D=180°-∠C=45°,
则AE=BE,AF=DF,
设AE=x,则AF=2-x,
在Rt△ABE中,根据勾股定理可得,AB=
2 |
同理可得AD=
2 |
则平行四边形ABCD的周长是2(AB+AD)=2[
2 |
2 |
2 |
故答案为:4
2 |

练习册系列答案
相关题目