题目内容

【题目】我们知道,假分数可以化为整数与真分数的和的形式,例如:.

在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.

例如:像,…这样的分式是假分式;像…这样的分式是真分式.

类似的,假分式也可以化为整式与真分式的和(差)的形式.

例如:将分式拆分成一个整式与一个真分式的和(差)的形式.

方法一:解:由分母为,可设

则由

对于任意,上述等式均成立,

,解得

这样,分式就被拆分成一个整式与一个真分式的和(差)的形式.

方法二:解:

这样,分式就拆分成一个整式与一个真分式的和(差)的形式.

1)请仿照上面的方法,选择其中一种方法将分式拆分成一个整式与一个真分式的和(差)的形式;

2)已知整数使分式的值为整数,求出满足条件的所有整数的值.

【答案】1;(2x=-1-311-15.

【解析】

1)先变形=,由真分式的定义,仿照例题即可得出结论;
2)先把分式化为真分式,再根据分式的值为整数确定整数x的值.

解:(1=

=

=

2=

=

=

是整数,也是整数,

x+2=1x+2=-1x+2=13x+2=-13

x=-1-311-15.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网