题目内容
【题目】如图,在中,,于点,点为中点,连接交于点,且,过点作,交于点.
(1)求的大小;
(2)求证:.
【答案】(1)∠CAD =22.5°;(2)见解析.
【解析】
(1)只要证明△BDF≌△ADC,推出BD=AD,推出∠BAD=∠ABD=45°=2∠CBE=2∠DAC即可解决问题.
(2)延长BE、DG交于点K.证明DK=BD=AD, GK=AF后可以证明Rt△AEF≌Rt△KEG,问题即可解决.
证明:(1)∵AD⊥BC,
∴∠ADC=90°
∵AB=BC,E为AC中点,
∴∠ABE=∠CBE= ∠ABC,BE⊥AC,
∴∠BEC=90°,
∴180°-∠C-∠ADC=180°-∠C-∠BEC
即∠CBE=∠CAD,
在△BDF和△ADC中,
,
∴△BDF≌△ADC,
∴BD=AD,
∴∠BAD=∠ABD=45°,∠CBE=∠DAC,
∴∠CAD=∠ABD=22.5°.
(2)延长BE、DG交于点K.
∵DG∥AB,
∴∠CGD=∠CAB,∠K=∠ABE,
∵∠BAC=∠C, ∠ABE=∠CBE=∠EAF
∴∠CGD=∠C,∠K=∠CBE =∠EAF
∴DG=DC,DK=BD,
∴△BDF≌△ADC,
∴CD=DF,
∴DG=DF,DK=BD=AD,
∴DK-DG=AD-DF,
即GK=AF
在Rt△AEF和Rt△KEG中
,
∴Rt△AEF≌Rt△KEG(AAS),
∴EF=EG.
练习册系列答案
相关题目