题目内容
【题目】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____
【答案】
【解析】
分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
如图,连接BF.
∵△AEF是由△ABE沿AE折叠得到的,
∴BF⊥AE,BE=EF.
∵BC=6,点E为BC的中点,
∴BE=EC=EF=3
根据勾股定理有AE=AB+BE
代入数据求得AE=5
根据三角形的面积公式
得BH=
即可得BF=
由FE=BE=EC,
可得∠BFC=90°
再由勾股定理有BC-BF=CF
代入数据求得CF=
故答案为
练习册系列答案
相关题目
【题目】某商店经营甲、乙两种商品,其进价和售价如下表:
甲 | 乙 | |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
已知该商店购进了甲、乙两种商品共160件.
(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?
(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?