题目内容

如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.求证:△BED≌△CFD.
证明见解析.

试题分析:利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.
试题解析:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°.
∵AB=AC,
∴∠B=∠C.
∵D是BC的中点,
∴BD=CD.
∴△BED≌△CFD.
考点: 1.全等三角形的判定与性质;2.等腰三角形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网