搜索
题目内容
如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
A.5 B.4 C.3 D.2
试题答案
相关练习册答案
B.
试题分析:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∴①说法正确;
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,
∴△ECF是等腰直角三角形,
∴∠CFE=45°
∴∠AFD=75°
∴∠DAF=15°
∴②正确;
∵AC是正方形ABCD的对角线,∴∠BCA=45°
∴AC⊥EF
又CE=CF
∴AC垂直平分EF,
∴③正确;
在AD上取一点G,连接FG,使AG=GF,
则∠DAF=∠GFA=15°,
∴∠DGF=2∠DAF=30°,
设DF=1,则AG=GF=2,DG=
,
∴AD=CD=2+
,CF=CE=CD-DF=1+
,
∴EF=
CF=
+
,而BE+DF=2,
∴④说法错误;
∵S
△ABE
+S
△ADF
=2S
△ABE
=2×
AD×DF=2+
,
S
△CEF
=
CE×CF=
,
∴⑤正确
故选B.
考点: 1.正方形的性质;2.全等三角形的判定与性质;3.等边三角形的性质.
练习册系列答案
名师名校全能金卷系列答案
学效评估完全测试卷系列答案
赢在课堂全程优化达标测评卷系列答案
浙江期末冲刺100分系列答案
全能卷王评价卷系列答案
期末直通车系列答案
浙江考卷系列答案
期末冲刺闯关100分系列答案
夺冠金卷系列答案
期末考试金钥匙系列答案
相关题目
如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积。
如图,在方格纸中,△PQR的三个顶点及A,B,C,D,E五个点都在小方格的顶点上,现以A,B,C,D,E中的三个点为顶点画三角形.
(1)在图甲中画出一个三角形与△PQR全等;
图甲
(2)在图乙中画出一个三角形与△PQR面积相等但不全等.
图乙
如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.求证:△BED≌△CFD.
已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于 ( )
A.40°
B.60°
C.80°
D.90°
在Rt△ABC中,∠C=90
0
,AC="8,BC=6," 则正方形ABDE的面积为( )
A.10
B.25
C.28
D.100
如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件
,使△ABC≌△DBE.(只需添加一个即可)
如图,已知△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,垂足分别为E、F.如果DE=DF,∠BAC=60°,AD=20cm,那么DE的长是_______cm.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总