题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)

【答案】①④
【解析】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0, ∵对称轴在y轴右侧,且﹣ =1,即2a+b=0,
∴a与b异号,即b<0,
∴abc>0,选项①正确;
∵二次函数图象与x轴有两个交点,
∴△=b2﹣4ac>0,即b2>4ac,选项②错误;
∵原点O与对称轴的对应点为(2,0),
∴x=2时,y<0,即4a+2b+c<0,选项③错误;
∵x=﹣1时,y>0,
∴a﹣b+c>0,
把b=﹣2a代入得:3a+c>0,选项④正确,
故答案是:①④.
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网