题目内容

【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.

(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.

【答案】
(1)证明:∵四边形ABCD内接于圆O,

∴∠DCB+∠BAD=180°,

∵∠BAD=105°,

∴∠DCB=180°﹣105°=75°,

∵∠DBC=75°,

∴∠DCB=∠DBC=75°,

∴BD=CD;


(2)解:∵∠DCB=∠DBC=75°,

∴∠BDC=30°,

由圆周角定理,得, 的度数为:60°,

= = =π,

答: 的长为π.


【解析】此题主要考查了弧长公式应用以及圆周角定理等知识,根据题意得出∠DCB的度数是解题关键.(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出 的度数,再利用弧长公式直接求出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网