题目内容
【题目】如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标;
(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=-x2-3x+4,C(1,0)(2)当t=-2时,线段PE的长度有最大值4,此时P(-2,6)(3)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
(,3)或(,3)或(,2)或(,2)
【解析】
解:(1)∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(-4,0),B(0,4).
∵抛物线y=-x2+bx+c经过A、B两点,
∴,解得.
∴抛物线解析式为y=-x2-3x+4.
令y=0,得-x2-3x+4=0,解得x1=-4,x2=1,
∴C(1,0).
(2)如图1,
设D(t,0).
∵OA=OB,∴∠BAO=45°.
∴E(t,t+4),P(t,-t2-3t+4).
PE=yP-yE=-t2-3t+4-t-4=-t2-4t=-(t+2)2+4.
∴当t=-2时,线段PE的长度有最大值4,此时P(-2,6).
(3)存在.如图2,过N点作NH⊥x轴于点H.
设OH=m(m>0),∵OA=OB,∴∠BAO=45°.
∴NH=AH=4-m,∴yQ=4-m.
又M为OA中点,∴MH=2-m.
当△MON为等腰三角形时:
①若MN=ON,则H为底边OM的中点,
∴m=1,∴yQ=4-m=3.
由-xQ2-3xQ+4=3,解得.
∴点Q坐标为(,3)或(,3).
②若MN=OM=2,则在Rt△MNH中,
根据勾股定理得:MN2=NH2+MH2,即22=(4-m)2+(2-m)2,
化简得m2-6m+8=0,解得:m1=2,m2=4(不合题意,舍去).
∴yQ=2,由-xQ2-3xQ+4=2,解得.
∴点Q坐标为(,2)或(,2).
③若ON=OM=2,则在Rt△NOH中,
根据勾股定理得:ON2=NH2+OH2,即22=(4-m)2+m2,
化简得m2-4m+6=0,∵△=-8<0,
∴此时不存在这样的直线l,使得△MON为等腰三角形.
综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
(,3)或(,3)或(,2)或(,2).
(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
(2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
(3)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.