题目内容
【题目】如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.
(1)求证:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半径.
【答案】(1)证明见解析;(2)5cm.
【解析】试题分析:(1)连接OA,因为点A在⊙O上,所以只要证明OA⊥AE即可;由同圆的半径相等得:OA=OD,则∠ODA=∠OAD,根据角平分线可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,则AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F,证明四边形AOFE是矩形,得OF=AE=4cm,由垂径定理得:DF=3,根据勾股定理求半径OD的长.
试题解析:
(1)连结OA,∵OA=OD,
∴∠ODA=∠OAD,
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA,
∴EC∥OA,
∵AE⊥CD,
∴OA⊥AE,
∵点A在⊙O上,
∴AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F,
∵∠OAE=∠AED=∠OFD=90°,
∴四边形AOFE是矩形,
∴OF=AE=4cm,
又∵OF⊥CD,
∴DF=CD=3cm,
在Rt△ODF中,OD==5cm,
即⊙O的半径为5cm.
练习册系列答案
相关题目