题目内容

【题目】如图,四边形ABCD是正方形, GBC上任意一点,DEAG于点E,BFAG于点F.

(1) 求证:DE-BF = EF;

(2) 当点GBC边中点时, 试探究线段EFGF之间的数量关系,并说明理由.

【答案】(1)证明见解析;(2)EF = 2FG,理由见解析.

【解析】分析:(1)本题的关键是求△ADE≌△ABF,以此来得出DE=AF=AE+EF=BE+EF,这两个三角形中已知的条件有AD=BA,一组直角,关键是再找出一组对应角相等,可通过证明∠DAF和∠ABF来实现.(通过平行和等角的余角相等来证得)
(2)通过证明AFB ∽△BFG ∽△ABG得出AB,BG;AF,BF;BF,BG之间的比例关系,根据点GBC边中点,来得出AF,BF,BF,FG之间的比例关系,然后根据(1)中得出的结果来求BF,FG的大小关系.

详解:(1) 证明:

四边形ABCD 是正方形, BFAG , DEAG

DA=AB, BAF + DAE = DAE + ADE = 90°

BAF = ADE ABF DAE

BF = AE , AF = DE

DE-BF = AF-AE = EF

(2)EF = 2FG 理由如下:

ABBC , BFAG , AB =2 BG

AFB ∽△BFG ∽△ABG

AF = 2BF , BF =2FG

(1), AE = BF, EF = BF = 2 FG

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网