题目内容
【题目】(1)如图1,四边形ABCD中,AB=7,BC=3,∠ABC=∠ACD=∠ADC=45°,求BD的长;
(2)如图2,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
【答案】(1);(2) 7-3.
【解析】
(1)在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC,证明△EAC≌△BAD,证明BD=CE,然后在直角三角形BCE中利用勾股定理即可求解;
(2)在线段AC的右侧过点A作AE⊥AB于点A,交BC的延长线于点E,证明△EAC≌△BAD,证明BD=CE,即可求解.
(1)如图1,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.
∵∠ACD=∠ADC=45°,
∴AC=AD,∠CAD=90°,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
,
∴△EAC≌△BAD,
∴BD=CE.
∵AE=AB=7,
∴BE=,∠ABE=∠AEB=45°,
又∵∠ABC=45°,
∴∠ABC+∠ABE=45°+45°=90°,
∴EC=,
∴BD=CE=.
(3)如图2,在线段AC的右侧过点A作AE⊥AB于点A,交BC的延长线于点E,连接BE.
∵AE⊥AB,
∴∠BAE=90°,
又∵∠ABC=45°,
∴∠E=∠ABC=45°,
∴AE=AB=7,BE=,
又∵∠ACD=∠ADC=45°,
∴∠BAE=∠DAC=90°,
∴∠BAE-∠BAC=∠DAC-∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
,
∴△EAC≌△BAD,
∴BD=CE,
∵BC=3,
∴BD=CE=7-3.
练习册系列答案
相关题目