题目内容
【题目】如图,在△ABC中,AB=AC,D为三角形内一点,且△DBC为等边三角形.
(1)求证:直线AD垂直平分BC;
(2)以AB为一边,在AB的右侧画等边△ABE,连接DE,试判断以DA,DB,DE三条线段是否能构成直角三角形?请说明理由.
【答案】(1)见解析;(2)能构成直角三角形,理由见解析.
【解析】
(1)由AB=AC确定点A在线段BC的垂直平分线上,再由等边三角形△DBC知DB=DC,即可确定直线AD垂直平分BC;(2)连接CE,利用三角形全等证明AD=CE,再依据DB=DC,将三条边转化为同一个三角形的三条边,再求得∠DCE=900即可判断.
证明:(1)∵△DBC为等边三角形,
∴DB=DC,
∴D在BC的垂直平分线上,
∵AB=AC,
∴A在BC的垂直平分线上,
∴直线AD垂直平分BC;
(2)以DA,DB,DE三条线段能构成直角三角形;
连接CE,
∵∠ABE=∠DBC=60°,
∠ABE﹣∠DBE=∠DBC﹣∠DBE,
∴∠ABD=∠EBC,
在△EBC和△ABD中,,
∴△EBC≌△ABD,
∴∠BCE=∠ADB,AD=CE,
在△ADB和△ADC中, ,
∴△ADB≌△ADC,
∴∠ADB=∠ADC,
∴∠ADB=(360°﹣∠BCD)=150°,
∴∠BCE=∠BDA=150°,
∴∠DCE=∠BCE﹣∠BCD=150°﹣60°=90°,
∵CE=DA,DC=DB,
∴以DA,DB,DE三条线段能构成直角三角形.-
练习册系列答案
相关题目