题目内容
【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
【答案】(1)抛物线的函数表达式为y=﹣x2+
x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为
;(3)抛物线向右平移的距离是4个单位.
【解析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=-t2+
t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
(1)设抛物线解析式为y=ax(x-10),
∵当t=2时,AD=4,
∴点D的坐标为(2,4),
∴将点D坐标代入解析式得-16a=4,
解得:a=-,
抛物线的函数表达式为y=-x2+
x;
(2)由抛物线的对称性得BE=OA=t,
∴AB=10-2t,
当x=t时,AD=-t2+
t,
∴矩形ABCD的周长=2(AB+AD)
=2[(10-2t)+(-t2+
t)]
=-t2+t+20
=-(t-1)2+
,
∵-<0,
∴当t=1时,矩形ABCD的周长有最大值,最大值为;
(3)如图,
当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),
∴矩形ABCD对角线的交点P的坐标为(5,2),
当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;
当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;
∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,
当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,
∵AB∥CD,
∴线段OD平移后得到的线段GH,
∴线段OD的中点Q平移后的对应点是P,
在△OBD中,PQ是中位线,
∴PQ=OB=4,
所以抛物线向右平移的距离是4个单位.

【题目】点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
A. 75° B. 60° C. 45° D. 30°
【题目】(10分)学校组织学生参加综合实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
售价x(元/双) | 150 | 200 | 250 | 300 |
销售量y(双) | 40 | 30 | 24 | 20 |
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为3000元,则其单价定为多少元?