题目内容
(12分)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的长.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的长.
证明:(1)∵B E⊥C E于E,AD⊥C E于D,
∴∠E=∠ADC=90°(1分)
∠BCE=90°— ∠ACD,∠CAD=90°¾∠ACD,
∴∠BCE=∠CAD (3分)
在△BCE与△CAD 中,
∠E=∠ADC,∠BCE=∠CAD, BC= AC ∴△C E B≌△AD C (4分)
(2)∵△C E B≌△AD C ∴ B E= D C, C E= AD
又AD=9 ∴C E= AD=9,D C= C E — D E=9—6 = 3,∴B E= DC = 3( cm) (5分)
∵∠E=∠ADF=90°,∠B FE=∠AFD,∴△B FE∽△ AFD (6分)
∴ 即有 (7分)
解得:EF=( cm) (8分)
∴∠E=∠ADC=90°(1分)
∠BCE=90°— ∠ACD,∠CAD=90°¾∠ACD,
∴∠BCE=∠CAD (3分)
在△BCE与△CAD 中,
∠E=∠ADC,∠BCE=∠CAD, BC= AC ∴△C E B≌△AD C (4分)
(2)∵△C E B≌△AD C ∴ B E= D C, C E= AD
又AD=9 ∴C E= AD=9,D C= C E — D E=9—6 = 3,∴B E= DC = 3( cm) (5分)
∵∠E=∠ADF=90°,∠B FE=∠AFD,∴△B FE∽△ AFD (6分)
∴ 即有 (7分)
解得:EF=( cm) (8分)
略
练习册系列答案
相关题目