题目内容

如图:△ABC中,∠C=90°,AC=8cm,AB=10cm,点P由点C出发以每秒2cm的速度沿线段CA向点A运动(不运动到A点),⊙O的圆心在BP上,且⊙O分别与AB、AC相切,当点P运动2秒钟时,⊙O的半径是______.
若右图所示,过O作OD⊥AC于D,再过O作OE⊥AB于E,

设OD=x,DP=y,
∵OD⊥AC,
∴OP=
x2+y2

在Rt△ABC中,BC=
AB2-AC2
=6,
同理可得BP=
52

∴OB=BP-OP=
52
-
x2+y2

BE=10-AE=10-(4+y)=6-y,
又∵OE2+BE2=OB2
∴x2+(6-y)2=(
52
-
x2+y2
2
即16-4
13
x2+y2
+12y=0①,
∵OD⊥AC,BC⊥AC,
∴ODBC,
∴△ODP△BCP,
∴DP:CP=OD:BC,
∴y:4=x:6,
∴y=
2
3
x②,
把②代入①,得
28
3
x=16,
∴x=
12
7

故答案是
12
7
cm.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网